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Abstract

The paper concerns a theoretical description able to capture the onset of instabilities in saturated sands

at high filtration velocities (e.g. the onset of piping phenomena). Motivated by own experiments we propose

a thermodynamical two component model which accounts for a threshold effect at a critical value of the

relative velocity of components. This property is incorporated in the source term of momentum balance

equations by means of a nonlinear contribution accounting for spatial variations of the porosity. We prove

the thermodynamical admissibility of such a model. By means of a linear stability analysis we show the
existence of the onset of instability for realistic values of material parameters gained from experiments.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

We aim to construct a macroscopic model of water flows through sandy soils able to capture
the point of loss of stability related to rapid changes of permeability. These changes are due to
inhomogeneities of porosity which influence momentum exchange between components. In ex-
periments one observes these phenomena in form of channels appearing in an initially homoge-
neous material. This leads, in turn, to local increments of flow velocities, fluidization and erosion
take place destroying locally parts of the soil skeleton. Details concerning the physical motivation,
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experimental evidence, and geophysical relevance can be found in the Ph.D. Thesis of Theo
Wilhelm (Wilhelm, 2000).

Such channeling processes in saturated granular media are of interest in various fields of ap-
plication. Their consequences in geotechnical engineering are frequently disastrous. As an illus-
trative example the effect of piping on the ‘‘Baldwin Hills’’ reservoir is shown in Fig. 1.

Inspection of seepage experiments which we describe in the next section, and in which water
flows through a macroscopically homogeneous 1 grain skeleton of sand, reveals the following
characteristic phenomena:

(i) At fluid velocities small compared to the minimum fluidizing velocity 2 the macroscopic ho-
mogeneity is preserved. Porosity, permeability, and thus fluid flow rates remain constant
throughout the system.

(ii) When the fluid velocity further increases macroscopic inhomogeneities in form of channels
directed towards the flow direction begin to form. Flows in smaller channels are attracted
by bigger ones.

(iii) When a big channel reaches the surface of the sample the flow behavior changes significantly.
The flow rate increases rapidly and it is concentrated mainly within the big channel. Smaller
channels form back or change their directions towards the main channel.

Fig. 1. Piping failure at Baldwin Hills Reservoir, California 1963 (Cedergren, 1967).

1 The terms microscopic and macroscopic are used in a continuum mechanical sense (e.g. Bear, 1972).
2 The minimum fluidizing velocity is the velocity at which the Terzaghi effective stress theoretically vanishes and the

grain skeleton (theoretically) looses its strength. The hydraulic gradient is equal to the critical hydraulic gradient (see

Wilhelm (2000) for further details and references).
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These observations suggest that the fluid/grain skeleton interactions are sensitive to spatial
variations of the porosity.

According to the above described observations we have to construct a model which yields an
instability of flows appearing for sufficiently high porosity gradients, and sufficiently high relative
velocities. We construct such a model by a modification of the momentum source appearing in
two component models of saturated granular materials. In terms of models based on a Darcy law
it means that we are modifying the Darcy law by making it dependent on the porosity gradient
with a threshold behavior with respect to the relative velocity. It is demonstrated in Fig. 2: The
flow resistance in a conically formed pipe or pore channel is smaller towards the direction of the
widening of the channel.

Such a model must be necessarily nonlinear in its dependence on the relative velocity but not on
the porosity gradient. We incorporate these requirements through a modification of the mo-
mentum source in the two component model. This requires a verification of thermodynamical
conditions imposed on the model by the second law of thermodynamics. For this reason we
devote Section 3, and the appendix of this paper to the evaluation of thermodynamical admis-
sibility conditions.

We limit the attention to small elastic deformations of the skeleton. This limitation is not very
crucial for the stability analysis shown in Section 4, as it is performed by means of a linear
perturbation method which is not influenced by mechanical nonlinearities within the stress tensor
of the skeleton. We also assume the isotropy of the system, and neglect viscous effects in the
partial stresses of the fluid component. All these assumptions are made in order to expose better
the main property of the model yielding the instability of flows and piping effects. Incidentaly the
lack of macroscopic viscosity of the fluid component does not mean that the real fluid is inviscid.
It is known that some of those microscopic viscous properties are hidden in momentum sources of
the macroscopic model.

In Section 4 we present the main results of the work. We investigate the stability of homoge-
neous seepage processes by superposing a small dynamical perturbation. We show that the dis-
persion relation may indeed contain solutions leading to the instability provided a material
coefficient C which describes an influence of the porosity gradient on the exchange of momentum
between components is sufficiently large. This result is illustrated by an example in the last section
of the paper.

Fig. 2. Flow in a conically shaped pore channel (schematic).
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2. Experiments

The stability of a (quartz) sand–water mixture at a critical upward fluid flow was investigated
experimentally (Wilhelm, 2000). A 20 cm high column of fine quartz sand contained in a perspex
cylinder was used as specimen (see Fig. 3a).

The pore water pressure at the bottom of the column (2) was controlled by changes of the level
of container (1) and the outflux at the top of the column was measured (3). The permeability and
the relative fluid velocity were calculated from the geometry of the specimen, the applied pressure
gradient and the water outflux. Fig. 3b shows the filter velocity, vf :¼ nvF, as a function of the
applied pressure gradient in terms of the hydraulic gradient, i :¼ ozp=ðqFgÞ � 1 (the signs are due
to the conventions that p is positive for compression, and gravitation g is pointing towards the
positive z-direction). At the rapid fluid velocity increment shown in Fig. 3b a channel has formed.
The system has lost stability.

This loss of stability is related to the formation of a structure demonstrated in Fig. 4.

Fig. 3. (a) Setup of seepage experiments (left): (1) indicates the water source; (2) the specimen and (3) the output flux

measuring unit. (b) Result of a seepage experiment with a quartz sand–water mixture (right): the course of the filter ve-

locity nvF against the applied pore water pressure gradient in terms of the hydraulic gradient i :¼ ozpF=ðqFgÞ � 1 is shown.

Fig. 4. Pipe formation in seepage experiment. Picture from a seepage experiment: At high fluid velocities channels start

to select a big channel (marked as a dark shadow on the right) for the flow in the direction to the top, while small

channels are reoriented in direction of the big channel (light shadows on the right). The small picture in the box in-

dicates the position of the camera, and the area of the experimental glass container (size 42� 13� 56 cm) reproduced in

pictures.

1932 T. Wilhelm, K. Wilma�nnski / International Journal of Multiphase Flow 28 (2002) 1929–1944



The sample transforms from a homogeneous state not shown in this figure to a configuration
with a pattern of several small channels dominated by a big channel (Fig. 4).

3. Construction of a macroscopical model

3.1. Fields and basic assumptions

We rely on a macroscopic two component description of saturated granular materials. Then in
a continuum mechanical model processes are described by the following fields:

ðx; tÞ 7!fqS;qF; n; uSk ; v
F
k g; k ¼ 1; 2; 3; ð1Þ

where x denotes a current position of a particle of a solid component simultaneously occupied by
a particle of the fluid component (continuous mixture), t is an instant of time and the fields are
denoted as follows. qS, qF are the current partial mass densities of the solid and fluid component,
respectively, n 2 ½0; 1� is the porosity (the volume fraction of the fluid component related to the
total representative volume element, REV), uSk––the displacement of the solid, vFk ––the velocity of
the fluid. We use Cartesian coordinates fxkgk¼1;2;3.

According to these definitions the quantity

wk :¼ vFk � vSk ; vSk :¼
ouSk
ot

ð2Þ

describes the relative (seepage) velocity (e.g. Kolymbas, 1998, p. 26).
As we aim to describe solely certain stability properties of flows in such materials we neglect the

compressibility of real materials. This yields some thermodynamical limitations as well as limi-
tations of modes of propagation of waves. The former will be investigated in the sequel, the latter
are immaterial for our present purposes. Consequently we make the following assumption:

qS ¼ ð1� nÞqSR; qSR ¼ const:; qF ¼ nqFR; qFR ¼ const:; ð3Þ
where qFR; qSR are the so called ‘‘real’’ mass densities of components.

This assumption reduces the set of fields (1) to the fields of porosity n, displacement uSk , and
velocity vFk .

We require that field equations should follow from balance laws of mass and momentum for
both components supplemented with appropriate constitutive relations. We limit attention to
isotropic poroelastic materials and ideal fluids. We explain the physical contents of these as-
sumptions in the next section.

It is obvious from the choice of fields that we consider solely isothermal processes, i.e. tem-
perature will not appear anywhere in this model in the explicit form.

3.2. Field equations

As mentioned above we rely on partial balance equations for the two component system. Under
the incompressibility assumption described in the previous section the mass balance equations
reduce to the following form (e.g. Wilmanski, 2001):
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on
ot

þ o

oxk
ðnvFk Þ ¼ 0;

o

oxk
½ð1� nÞvSk þ nvFk � ¼ 0: ð4Þ

On the other hand the partial momentum equations are as follows:

qS ovSk
ot

�
þ vSl

ovSk
oxl

�
¼ oT S

kl

oxl
þ p�k ;

qF ovFk
ot

�
þ vFl

ovFk
oxl

�
¼ oT F

kl

oxl
� p�k ;

ð5Þ

where we use the following notation: T F
kl , T

S
kl––the partial Cauchy stress tensors, p�k––the mo-

mentum source (diffusion force, internal friction, etc.), vFk , v
S
k––the partial velocities. We have

neglected body forces for simplicity. They do not influence thermodynamical considerations
which we present in the next section, and they can be easily supplemented when needed in ap-
plications.

These equations become field equations if we specify constitutive relations. For the purpose of
this work we choose the following set of constitutive variables

V :¼ n;
on
oxk

; ekl;wk

� �
; ð6Þ

where

ekl :¼
1

2

ouSk
oxl

�
þ ouSl

oxk

�
� ouSk

oxl
;

keklk � maxðjk1
ej; jk

2
ej; jk

3
ejÞ � 1

ð7Þ

denote the deformation tensor of the solid component (skeleton). The deformation of the skeleton
is assumed to be small, i.e. the biggest absolute value of the eigenvalues ke of ekl is much smaller
than unity.

The above choice of constitutive variables justifies the names of components mentioned in
Section 3.1. In the limit case n ¼ 0 we deal with a linear elastic material, and in the limit case n ¼ 1
we deal with an ideal (incompressible) fluid.

The following constitutive quantities must be specified:

C :¼ fT F
kl ; T

S
kl; p

�
k ;w

F;wSg; ð8Þ
where wF, wS are the partial Helmholtz free energies. They are introduced below for thermody-
namical reasons.

For these quantities we assume that the following constitutive relation holds:

C ¼ CðVÞ: ð9Þ
It is assumed to be sufficiently smooth.

Substitution of constitutive relations in the balance equations yields field equations of the
model.

Let us mention that the number of field equations (two scalar equations following from mass
balance, and two vector equations following from momentum balance, i.e. 8 equations) is higher
than the number of fields (one scalar field of porosity n, and six components of two vector fields––
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displacement of the skeleton uSk , and velocity of the fluid vFk , i.e. 7 fields). This is natural in the case
of constraints, and an additional field must be introduced as a reaction force on the constraint. In
our case it is the scalar field of pore water pressure p whose existence is motivated by the second
law of thermodynamics as explained in Appendix A. In this way the model becomes consistent
mathematically.

3.3. Thermodynamical admissibility of constitutive relations

It is customary to require in continuous models that a second law of thermodynamics satisfied
by all solutions of field equations. For the class of isothermal processes considered in this work we
assume this law to have the following form (e.g. Wilmanski, 2001). The inequality

qS owS

ot

�
þ vSk

owS

oxk

�
¼ qF owF

ot

�
þ vFk

owF

oxk

�
� T S

kl

ovSk
oxl

� T F
kl

ovFk
oxl

� p�kwk 6 0 ð10Þ

must be identically satisfied for all solutions of field equations.
The second law is usually formulated as an entropy inequality. It reduces to the above form

under the assumption of constant temperature. The Helmholtz free energies wS, wF are introduced
for convenience. If eS, eF denote the densities of partial internal energies and gS, gF––the densities
of partial entropies then

wS :¼ eS � TgS; wF :¼ eF � TgF: ð11Þ

A rather technical evaluation of the inequality (10) is presented in Appendix A. We proceed to
specify constitutive relations for partial stresses T F

kl , T
S
kl, and for the momentum source satisfying

the above inequality.
Let us begin with the momentum source. According to the thermodynamic considerations

presented in Appendix A it has the following structure:

p�k ¼ Pwk � p
�

þ qS ow
S

on

�
on
oxk

: ð12Þ

The coefficient P is the material parameter describing the permeability of the skeleton. It depends
on the porosity n. However this dependence is immaterial for the analysis of this work because it
appears in the product with the relative velocity wk. Consequently it is nonlinear, and such
contributions do not influence the linear stability analysis presented further in this work. How-
ever, it should be born in mind that the coefficient P still depends parametrically on an initial
porosity.

Unspecified remains the contribution of the free energy. We relate this part to the threshold
effects appearing at the beginning of piping. Namely we assume that it has the following form:

qS ow
S

on
¼ �qF ow

F

on
¼ Cffiffiffi

2
p 1

�
þ W � Y
jW � Y j

� ffiffiffiffiffi
W

p
; C; Y > 0; W :¼ 1

2
wkwk; ð13Þ

where the material parameter C may be still dependent on the porosity n, deformation of the
skeleton ekl, and the invariant of the relative velocity W . The expression in parenthesis introduces
the threshold behavior into the model. Its existence has been indicated in Section 2 (see Fig. 3b).
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The constant
ffiffiffiffiffiffi
2Y

p
denotes the threshold. As we see further it yields flow instabilities for relative

velocities whose magnitude exceeds the limit
ffiffiffiffiffiffi
2Y

p
. It needs to be determined experimentally,

however, in a first approximation it can be set equal to the minimum fluidizing velocity. This
relation is motivated by thermodynamic identities for free energy functions presented in Appendix
A, and in particular by the results for the dependence of free energies on the porosity in the static
case (A.15)2. A physically motivated, less elaborate deduction is given in (Wilhelm, 2000, p. 52).

For the partial stress tensors T S
kl, T

F
kl we assume in addition that they do not contain contri-

butions of the relative velocity wk. Otherwise we would have some sort of viscid reactions of the
material which we excluded from the beginning of the construction of the model. Inspection of
relations (A.7) and (A.8) shows that such contributions would be of the order higher than one in
wk. Such an assumption together with (13) yields the following constitutive relations:

T S
kl ¼ �ð1� nÞpdkl þ

o

oekl
ðqSwS þ qFwFÞ;

T F
kl ¼ �npdkl:

ð14Þ

In addition the assumption on small deformations of the isotropic skeleton yields Hooke�s rela-
tion in the partial stress T S

kl

o

oekl
ðqSwS þ qFwFÞ ¼ kSemmdkl þ 2lSekl; ð15Þ

where kS, lS are Lam�ee parameters dependent solely on the porosity n.
The momentum balance equations (4) have then the following form:

qS ovSk
ot

�
þ vSl

ovSk
oxl

�
¼ �ð1� nÞ op

oxk
þ o

oxl
ðkSemmdkl þ 2lSeklÞ

þ Pwk �
Cffiffiffi
2

p 1

�
þ W � Y
jW � Y j

� ffiffiffiffiffi
W

p on
oxk

;

qF ovFk
ot

�
þ vFl

ovFk
oxl

�
¼ �n

op
oxk

� Pwk þ
Cffiffiffi
2

p 1

�
þ W � Y
jW � Y j

� ffiffiffiffiffi
W

p on
oxk

; kS;lS;P;C; Y > 0:

ð16Þ

In the remaining part of this work we investigate linear stability properties of processes described
by these equations.

Relations (13) and (15) yield integrability relations

o

oekl

qFwF

n

�
� qSwS

1� n

�
¼ o

on
ðkSemmdkl þ 2lSeklÞ; ð17Þ

which impose limitations of the dependence of material parameters kS, lS on the porosity n. For
instance, if we assume that wF is independent of ekl we obtain a linear dependence on the porosity.
As obtained from dynamical measurements (speeds of bulk waves in saturated granular materials)
this is a relatively good approximation for porosities between, say, 0.05 to 0.6. Otherwise we have
to construct a model without, for instance, the requirement (13). Simultaneously the definition of
C which is a part of relation (13) has consequences on the behavior of material parameters kS, lS.
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The above integrability conditions indicate that these parameters may change in a discontinuous
manner at W ¼ Y , i.e. by flows locally yielding fluidization. This is in accord with the remarks
which we made in Section 1. We shall account for this property in the next section assuming that
the elastic parameters become much smaller after fluidization.

4. Stability analysis

In this section a perturbation analysis for a saturated elastic grain skeleton subject to an up-
ward fluid flow is shown. The nonlinear interaction term introduced in the previous section is
taken into account. It is shown that the analysis is therefore capable to model the onset of ex-
perimentally observed instabilities that classical models are not able to describe.

4.1. Model

The calculation is based on the balance equations (3) and (16). Modelled is the vertical flow of
water through a grain skeleton in a wide tube. Due to the boundary conditions (horizontal dis-
placements are zero) the problem reduces to one dimension. Gravitation is considered in the
calculation by adding appropriate body forces to the momentum balance equations, qSg in (16)1
and qFg in (16)2. It is assumed that the relative velocity has exceeded the threshold, W > Y , such
that the nonlinear interaction term becomes active. In the one dimensional case only the com-
ponents T F

33, T
S
33 and e33 appear in the calculation (not quoted here). Thus the indices will be

skipped (e.g. e :¼ e33).

4.2. Field equations

Together with the compatibility condition relating the motion of the skeleton to the defor-
mation:

ote ¼ ozvS; ð18Þ

the equations for the fields fn; p; vF; vS; eg are

otnþ oz½nvF� ¼ 0;

� otnþ oz½ð1� nÞvS� ¼ 0;

nqFR½otvF þ vFozvF� ¼ �nozp þ nqFRg � PðvF � vSÞ þ CjvF � vSjozn;
ð1� nÞqSR½otvS þ vSozvS� ¼ Eoze� ð1� nÞozp þ ð1� nÞqSRg þ PðvF � vSÞ � CjvF � vSjozn;
ote ¼ ozvS:

ð19Þ

The elasticity parameter E of the grain skeleton is related to the Lam�ee parameters of the formula
(15) by the classical relation E ¼ kS þ 2lS. It is assumed to be constant in this linear analysis.
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4.3. Ground state––homogeneous seepage

The stability of the uniform state of a granulate subject to an upward fluid flow is investigated.
This state of uniform flow, indicated by the subscript 0, is characterized by

nðz; tÞ ¼ n0 ¼ const;

vSðz; tÞ ¼ vS0 ¼ 0;

vFðz; tÞ ¼ vF0 ¼ const;

pðz; tÞ ¼ p0ðzÞ;

eðz; tÞ ¼ e0 ¼ � c1
E
z:

ð20Þ

The stress distribution in the grain skeleton follows to be a linear function of depth. From this
and the constitutive relation for the skeleton, the deformation field for the ground state (20)5 follows.
The constant c1 is positive, as stresses in the skeleton are defined negative for compression.

Substituting (20)1�5 into the field equations reduces them to the equations governing the
equilibrium:

0 ¼ 0;

0 ¼ 0;

� ozp0 þ qFRg � P
n0

vF0 ¼ 0;

� c1
1� n0

� ozp0 þ qSRg þ P
1� n0

vF0 ¼ 0;

0 ¼ 0:

ð21Þ

These equations describe a steady ground state. In the case of a velocity controlled system 3 the
pore water pressure p0ðzÞ and the deformation e0ðzÞ can be calculated from these equations for a
given fluid velocity vF0 . In the case of a pressure gradient controlled system 4 the fluid velocity vF0
and the deformation e0ðzÞ can be calculated for a given pressure gradient.

If c1 is set equal to the submerged unit weight of the skeleton, c00 :¼ ð1� n0ÞðqSR � qFRÞg, Eq.
(21)3�4 imply that vF0 must vanish, thus describing the so called ‘‘geostatic’’ stress state consistently:

Ee0 ¼ �c00z;

p0 ¼ qFRgz:
ð22Þ

4.4. Linear equations governing small perturbations

To study the stability of the steady ground state the fields (20)1�5 are augmented by small
perturbations follow as

3 The fluid flow vF0 is controlled in the experiment. The known porosity depends on the material used and the way the

experiment is prepared.
4 The pore fluid pressure gradient ozp0 is controlled in the experiment.
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nðz; tÞ ¼ n0 þ n1ðz; tÞ;

vSðz; tÞ ¼ vS1ðz; tÞ;

vFðz; tÞ ¼ vF0 þ vF1 ðz; tÞ;

pðz; tÞ ¼ p0ðzÞ þ p1ðz; tÞ;

eðz; tÞ ¼ e0ðzÞ þ e1ðz; tÞ:

ð23Þ

Substituting (23)1�5 into the field equations (19)1�5, linearizing and considering the relations for
the equilibrium solutions, (21)3�4, the linearized equations governing the perturbations follow as

otn1 þ n0ozvF1 þ vF0 ozn1 ¼ 0;

� otn1 þ ð1� n0ÞozvS1 ¼ 0;

n0qFRotvF1 ¼ �n1ozp0 � n0ozp1 þ n1qFRg � PðvF1 � vS1Þ þ CjvF0 jozn1;

ð1� n0ÞqSRotvS1 ¼ Eoze1 � ð1� n0Þozp1 þ n1ozp0 � n1qSRg þ PðvF1 � vS1Þ � CjvF0 jozn1;

ote1 ¼ ozvS1 :

ð24Þ

4.5. Solutions in the form of plane waves

The perturbations are assumed to be in the form of plane waves:

n1ðz; tÞ ¼ N eðstþikzÞ;

vS1ðz; tÞ ¼ V S eðstþikzÞ;

vF1 ðz; tÞ ¼ V F eðstþikzÞ;

p1ðz; tÞ ¼ P eðstþikzÞ;

e1ðz; tÞ ¼ BeðstþikzÞ:

ð25Þ

Here the amplitudes N , V S, V F, P , B are constant and k is the wave vector. It corresponds to the
wavelength by 2p=jkj. This form of solution is possible due to the linearity of relations (22) with
respect to the depth variable z. The factor s is in general complex, s ¼ a� ib. The propagation
velocity of the wave is b=jkj. The real part a determines the stability of the system. If it is negative
or zero disturbances decay exponentially or remain small. The system is stable. If it is positive
small disturbances grow exponentially with time.

Substituting the plane wave solutions (25)1�5 into the governing equations for the small per-
turbations, (24)1�5, these degenerate into five linear equations for the five unknowns xk :¼
ðn1; vS1; vF1 ; p1; e1Þ:

Ajkxk ¼ 0
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with

Ajk ¼

sþ vF0 ik 0 n0ik 0 0

�s ð1� n0Þik 0 0 0

ozp0 � qFRg � CjvF0 jik �P n0qFRsþ P n0ik 0

�ozp0 þ qSRg þ CjvF0 jik ð1� n0ÞqSRsþ P �P ð1� n0Þik �Eik
0 �ik 0 0 s

0
BBBB@

1
CCCCA:

This system of linear equations has nontrivial solutions if and only if the determinant of its co-
efficient matrix Ajk vanishes. This condition leads to dispersion relation (third order polynomial)
for s as a function of k. Its roots determine all possible plane wave modes for a given wave vector
k. They were calculated using the algebra package MAPLE. As the expressions are rather lengthy
they are not quoted here. Depending on the parameters gained from experiments the real part of s
might be greater than zero for some wave vectors k. These modes lead to an exponential increase
in the amplitude of the originally small perturbations and thus to an unstable behavior.

As parameters for the calculation values from the experiment presented in Fig. 3b close to its
critical state were used:

qSR ¼ 2650 kg=m3;

qFR ¼ 1000 kg=m3;

n0 ¼ 0:47;

P ¼ n20q
FRg=j ¼ 1:2� 107 kg=ðm3 sÞ;

vF0 ¼ �1:6� 10�4 m=s;

ozp0 ¼ qFRg � P
n0

vF0 ¼ 14085 Pa=m:

Here j is the (Darcy) permeability evaluated from the experiment. The bulk modulus was as-
sumed to be very small E ¼ 1:0 Pa. This assumption is motivated by a dependence of the stiffness
of sand from the mean stress. In the range well bellow the threshold the skeleton behaves in a
rather stiff manner with values of material parameters different from those in the vicinity of the
point of fluidization. However the ground state belongs to this vicinity. There the sand looses its
stiffness. This is the reason for the choice of the small value of E. Such a dependence was indicated
at the end of Section 3.3.

Out of three roots Fig. 5 shows the significant root responsible for the unstable behavior.
The real part of s is plotted as a function of the wave number k and C, the parameter of the

nonlinear interaction term. Regions where the real part of s is greater than zero represent unstable
modes. It can be seen that there exist unstable modes for physically relevant parameters (C > 0,
E > 0).

The onset of instability of the system could be modelled using even the simplest form of the
nonlinear interaction term. The same calculation omitting the nonlinear interaction (by setting
C ¼ 0) does not show unstable modes (ReðsÞ > 0) unless the bulk modulus E is set to unrealistic,
negative values (not quoted here).

The above results show that the new model can be used for more realistic conditions of flows in
soils in order to describe the onset of unstable fluidization phenomena.

1940 T. Wilhelm, K. Wilma�nnski / International Journal of Multiphase Flow 28 (2002) 1929–1944



Acknowledgement

This work was supported by the Austrian Science Fund (FWF) in the framework of the pro-
jects P10956-OETE and P12701-TEC.

Appendix A

It is customary to eliminate the restriction of the inequality (10) to solutions of field equations
by means of Lagrange multipliers (e.g. M€uuller, 1985; Wilmanski, 1998). By doing so we obtain the
following inequality which should hold for all fields, and not only for solutions of field equations
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oxk
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Lagrange multipliers K; k;KF
k ;K

S
k are functions of constitutive variables V.

After application of the chain rule of differentiation in the inequality (A.1) the linearity with
respect to some derivatives can be seen. This yields the condition that coefficients of these de-
rivatives must vanish identically. We obtain for the coefficients of time derivatives:

on
ot

: K ¼ qS ow
S

on
þ qF ow

F

on
; ðA:2Þ

Fig. 5. Real part of one of the three roots of the dispersion relation as a function of the wave number k, and the

material parameter appearing in the nonlinear interaction C. Unstable modes can be seen ðReðsÞ > 0Þ for CJ 6000 kg/

(m2 s). The bulk modulus used in the calculation is E ¼ 1:0 Pa.
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oxk

:
o

o on
oxk

ðqSwS þ qFwFÞ ¼ 0; ðA:3Þ
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Consequently

qFKF
k ¼ �qSKS

k : ðA:6Þ

and, according to relation (A.3), multipliers KF
k ;K

S
k are independent of the gradient on=oxk.

On the other hand the coefficients of spatial derivatives lead to identities: 5
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mT

S
l=m � KF

mT
F
l=mÞ ¼ 0; ðA:9Þ

where the condition (A.2) was applied.
The condition following from the linearity with respect to the derivative oekl=oxm is immaterial

for further considerations, and we shall not quote it here.
It remains the following nonlinear part of the inequality which is called the residual inequality:

qS ow
S

on

�
þ k

�
wk

on
oxk

þ ðwk þ KF
k � KS

kÞp�k P 0: ðA:10Þ

It defines the dissipation in processes.
Let us notice that the dissipation contains an explicit dependence on the Lagrange multiplier k.

This multiplier plays the role of the reaction force on the constraint following from the as-
sumption on incompressibility of real components (compare Wilmanski, 2001). Consequently it
should be determined by field equations rather than by a constitutive relation, and it should not
appear in the dissipation inequality as the constraint (3)2 is holonomous (i.e. nondissipative).
Hence the inequality (A.10) cannot contain linear contributions of the porosity gradient, and this
yields the necessity of dependence of the momentum source on this gradient.

We do not investigate the above results in their full generality, and proceed to simplifications
yielding a model sufficient for our purposes.

5 The time derivative oekl=ot gives only a subclass of the conditions quoted below due to the relation
oekl
ot

¼ 1

2

ovSk
oxl

�
þ ovSl

oxk

�
:
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We assume the system to be isotropic, and linear with respect to a dependence on the porosity
gradient on=oxk. This means that neither free energies wS, wF, nor partial stress tensors T S

kl, T
F
kl , may

depend on the porosity gradient. Then the identities (A.3) and (A.9) are identically satisfied. Si-
multaneously we have the following representation for the momentum source (an isotropic vector
function of two vectorial constitutive variables)

p�k ¼ Pwk þ m
on
oxk

þ heklmwl
on
oxm

; ðA:11Þ

where P, m, h are scalar functions of invariants: W :¼ 1
2
wkwk, and wkðon=oxkÞeklm is the permutation

symbol. Substitution in (A.10) yields
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wkwk P 0: ðA:12Þ

We have used here the identity (A.2), and, in addition, we left out the dependence on non-
linear invariants containing contributions of ekl. The latter simplification is due to the assumption
(6).

Apparently the contribution with the coefficient h does not appear in the dissipation inequality
(A.12). It means its sign can be arbitrary as far as the thermodynamical admissibility is concerned.
Simultaneously the loss of stability in piping processes is irreversible. It means that it cannot be
related to the contribution with h. Consequently we can assume in our stability analysis that
h ¼ 0. It should be stressed, however, that the role of this contribution in flow processes has not
been sufficiently investigated as yet.

According to the previous remarks we have to choose m in such a way that the contribution of k
to (A.12) disappears. We proceed to investigate this problem.

The linearity with respect to the porosity gradient, and the assumption that k is a field yield:

k þ m þ qS ow
S

on
¼ 0;

o

oW
ðqSwS þ qFwFÞ ¼ 0: ðA:13Þ

On the other hand in static processes (vFk ¼ 0, vSk ¼ 0) the momentum balance of the fluid (4)2, and
relation (A.8) yield:

� opF
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� mjwk¼0
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oxk

¼ 0; pF :¼ n
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þ qF ow

F
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�����
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!
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Simultaneously we expect in this case that the pore water pressure p and the partial pressure in the
fluid pF are related to each other: pF ¼ np (Bear, 1972). On the other hand the expression in
parenthesis of (A.14)2 cannot be constant in general as the free energies depend, for instance, on
the deformation ekl. Consequently, the above relation for the partial pressure, and the fact that the
pore water pressure p is constant in such static experiments we must require:

p ¼ �mjwk¼0; qS ow
S

on

�
þ qF ow

F

on

�����
wk¼0

¼ 0; k ¼ p: ðA:15Þ
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It follows from (A.13)1

qS ow
S

on

����
wk¼0

¼ 0: ðA:16Þ

Let us summarize the results. Relations (A.7) and (A.8) for partial stresses have the form

T S
kl ¼ �ð1� nÞpdkl þ

o

oekl
ðqSwS þ qFwFÞ þOðjwkwkjÞ;

T F
kl ¼ �npdkl þOðjwkwkjÞ;

ðA:17Þ

where the contributions OðjwkwkjÞ are nonlinear with respect to the relative velocity. Relation
(A.11) reduces to the following one:

p�k ¼ Pwk � p
�

þ qS ow
S

on

�
on
oxk

; ðA:18Þ

and the residual inequality (A.12) indicates solely the positiveness of the permeability coefficient
P.

References

Bear, J., 1972. Dynamics of Fluids in Porous Media. Dover Publication, New York.

Cedergren, H.R., 1967. Drainage and Flow Nets. John Wiley and Sons.

M€uuller, I., 1985. Thermodynamics. Pitman, New York.

Kolymbas, D., 1998. Geotechnik––Bodenmechanik und Grundbau. Springer, Berlin.

Wilhelm, Th., 2000. Piping in Saturated Granular Media, Ph.D. Thesis, University of Innsbruck ftp://

ftp.uibk.ac.at/pub/uni-innsbruck/igt/publications/_wilhelm/phd_thesis_wilhelm.pdf.

Wilmanski, K., 2001. Note on the incompressibility in theories of porous and granular materials. ZAMM 81 (1), 37–42.

Wilmanski, K., 1998. Thermomechanics of Continua. Springer, Berlin.

1944 T. Wilhelm, K. Wilma�nnski / International Journal of Multiphase Flow 28 (2002) 1929–1944

http://ftp://ftp.uibk.ac.at/pub/uni-innsbruck/igt/publications/_wilhelm/phd_thesis_wilhelm.pdf
http://ftp://ftp.uibk.ac.at/pub/uni-innsbruck/igt/publications/_wilhelm/phd_thesis_wilhelm.pdf

	On the onset of flow instabilities in granular media due to porosity inhomogeneities
	Introduction
	Experiments
	Construction of a macroscopical model
	Fields and basic assumptions
	Field equations
	Thermodynamical admissibility of constitutive relations

	Stability analysis
	Model
	Field equations
	Ground state--homogeneous seepage
	Linear equations governing small perturbations
	Solutions in the form of plane waves

	Acknowledgements
	Appendix A
	References


